

2023

ADHAM HASHIBON , OWAIN BEYNON, OTELLO ROSCIONI

UCL

Ref. Ares(2023)8200327 - 30/11/2023

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 1 | 28

2023-11-30

D4.9 - CREATION OF A VALI-

DATION AND BENCH-

MARKING DATABASE

D4.9 - CREATION OF A VALIDATION AND

BENCHMARKING DATABASE

DOCUMENT CONTROL

Deliverable ID D4.9

Deliverable title Creation of a validation and benchmarking database

WP WP4

Task Task 4.4

Document Type Other

Dissemination level Public

Status Draft

Version 0.4

Lead beneficiary UCL

Contributing beneficiaries

Author(s) Adham Hashibon ,Owain Beynon (UCL) and Otello Roscioni (GCL)

Due date 2023-01-31 (M24)

Date delivered 2023-11-31 (M34)

ABSTRACT

This document reports the work, developments and ongoing activity in delivering verification and benchmark-

ing services (D4.9) for the entire OpenModel eco system. Herein, we present the first version of a working vali-

dation and verification framework. It describes a verification and validation Python package for the OpenModel

OIP that can be easily extended and expanded with additional data representing various ongoing use cases in

the project. We discuss the key aspects of the service, namely, the conversion of simulation data to a common

universal data structure (CUDS), the ability to store CUDS in a knowledge base, the activation of AI based V&V

backend, and the retrieval of simulation data as well as verification and validation data via connection to the

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 2 | 28

2023-11-30

knowledge base backend. Furthermore, we illustrate the capabilities of the V&V services with examples from

other OpenModel use cases.

CHANGE HISTORY

Version Date Comment

0.1 2023-05-11 First Draft

0.2 2023-05-12 Adapted using comments from Welchy Leite Cavalcanti (IFAM)

4.0 2023-11-10 Updated draft with latest devs (OB)

4.1 2023-11-11 Review (AH)

4.2 2023-11-21 Review (technical manager)

4.3 2023-11-27 Updates by Owain Beynon

4.4 2023-11-27 Second review (technical manager)

1.0 2023-11-30 Final

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 3 | 28

2023-11-30

TABLE OF CONTENTS

D4.9 - Creation of a validation and benchmarking database .. 1

Document Control ... 1

Abstract .. 1

Change History ... 2

Dissemination level ... 2

Table of Contents .. 3

List of Figures.. 4

1. Aims and Objectives .. 5

2. Overview Of the V&V Services ... 7

2.1 A graph database for simulation data .. 8

2.2 Validation and Benchmarking .. 10

3. Examples and demonstrations ... 15

3.1 Example 1: D5.5 Use Case .. 15

3.2 Example for SS1 ... 22

4. Next Step .. 27

5. Acknowledgment .. 28

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 4 | 28

2023-11-30

LIST OF FIGURES

Fig. 1: Depiction of D4.9 in the OpenModel workflow. .. 6

Fig. 2: Overview of the architecture of the V&V services. .. 7

Fig. 3: Depiction of how the Python packages in V&V relate to the architecture. ... 8

Fig. 4: Example of triples stored in the Fuseki knowledge base. .. 9

Fig. 5: Overview of the Jena Apache architecture and integration with V&V services through a Fuseki API. 10

Fig. 6: a)  between experimental and simulation data b) prediction of . .. 12

Fig. 7: Comparison between different ML methods on predicting the band gap value of silicon. 13

Fig. 8: Diagram of Random Forest regression method. .. 14

Fig. 9: Workflow of LAMMPS/Moltemplate simulation of water. .. 15

Fig. 10: Input variable for water_aa.lt. .. 16

Fig. 11: LAMMPS simulation output log. ... 16

Fig. 12: Workflow for the prediction of water density using LAMMPS and the V&V architecture. 17

Fig. 13: Graph of LAMMPS simulation CUDS... 18

Fig. 14: CUDS (Turtle) for LAMMPS simulation data created with SimPhoNy-osp. .. 19

Fig. 15: Example workflow for managing data through the Fuseki API. ... 20

Fig. 16: Graph of relationships and classes in the ontology stored in the knowledge base. 20

Fig. 17: Example workflow for performing ML on CUDS stored in the knowledge base. 21

Fig. 18: Workflow for V&V on Si band gap calculated with Quantum Espresso. .. 22

Fig. 19: Workflow for Quantum Espresso simulation CUDS as generated through SimPhoNy. 22

Fig. 20: Graph of Quantum Espresso simulation CUDS. .. 23

Fig. 21: CUDS (Turtle) for Quantum Espresso simulation data created with SimPhoNy-osp. 24

Fig. 22: Workflow of managing data through the Fuseki API. ... 25

Fig. 23: Graph of relationships and classes in the ontology stored in the knowledge base. 25

Fig. 24: Example script for performing ML on simulation data. .. 26

Fig. 25: Example of V&V services app in the launcher of OMI. ... 27

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 5 | 28

2023-11-30

1. AIMS AND OBJECTIVES

Work package 4 (WP4) objectives are:

1. Development of novel semantic based OntoFlow workflow builder with BDSS support
2. Automated AI- and MCO-enhanced model and method selection for advanced workflows based on in-

dustry requirements.
3. Provide advanced AI based Validation and Verification services for materials modelling and materials

data.
4. Integration and Applications for BDSS systems

For the V&V services, verification is defined as confirmation through objective evidence to determine whether
specified requirements have been fulfilled, where the objective evidence for verification may be determined
through performing alternative and additional calculations.1 For OpenModel, verification addresses such user
question as “are we implementing the model right?”. Validation is defined as confirmation through the provision
of objective evidence which ensure the requirements for specified application have been fulfilled, which may
correspond to performing additional calculations.1 In that respect, validation addresses the more overarching
question of “are the results correct?” which are important concepts when attempting to take well informed
decisions for the design of new materials based on simulations.

First, one needs to make sure that the right models are used (the Validation), i.e., models that are,

1) suitable for the case, able to describe relevant phenomena and processes,
2) reliable, able to provide the desired level of details (e.g., quantitative accuracy).
3) robust, able to describe the evolution of the system without loosing relevance,
4) solvable, i.e., can be solved within reasonable computational resources.
5) holistic, able to describe the interplay between the various phenomena across relevant time and

length scales

Second, one needs to be sure that the simulation of modelling in general is implemented right (the Verifica-
tion), e.g.

1) whether convergence is achieved,
2) whether the right numerical integration parameters are used.
3) whether sufficient sampling is made (e.g. k point sampling, size of time step etc).
4) whether convergence is achieved, or how far from convergence,
5) finite size effects
6) effects of discretisation’s, usually in the form of systematic errors
7) other numerical errors, etc

While verification of simulation workflows is a technical task that can be catered for relatively easily by internal
cycles 2,3. the reliance on simulation data in materials modelling has inherent risk factor due mainly to the lack

1 https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en
2 B.H.Thacker, S.W.Doebling, F.M.Hemez, M.C. Anderson, J.E. Pepin, and E.A. Rodriguez, Concepts of Model Verification and Validation, No.
LA-14167, 835920, 2004.
3 J. H. Panchal, S. R. Kalidindi, and D. L. McDowell, Key Computational Modeling Issues in Integrated Computational Materials Engineering,
Computer-Aided Design 45, 4 (2013).

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 6 | 28

2023-11-30

of validation, from e.g. experimental data. Subsequently, decision making workflows are compromised by un-
validated data, which hinders integrated materials modelling. Task 4.4 “Validation and Benchmarking by using

AI-based classification approaches” of WP4 requires the development of both verification and validation and
benchmarking services of data by using AI-based classification services. In that regard, machine learning (ML)
methods, such as neural networks (NN), provide pathways for validation in materials modelling. Furthermore,
implementation of semantics methods i.e., ontologies, are required for managing the large number of datasets
with complex dependencies used for ML-based validation and benchmarking. Consequently, for the creation of
validation and benchmarking (D4.9) the development of a database with semantic layer is necessary. Moreo-
ver, this provides a pathway to creating training and test sets for ML wrapper development.

Fig. 1: Depiction of D4.9 in the OpenModel workflow.

For D4.9, the main aim of this deliverable is the creation of a validation and benchmarking database resulting

from work done in Task 4.4. This task has three parts, the first consists of delivery of a database allowing valida-

tion services to be accessed. The second part is the validation services themselves, which is a software package,

based on SciKit-Learn4, of machine learning methods and models to perform verification, validation, and bench-

marking on simulation data available from the data (knowledge) base. Thirdly, the development of interfaces

and API are necessary to ensure integration between the database backend and the verification and validation

methods available through the service. In that regard, the deliverable focuses the OpenModel demonstration

success stories, where a database with API services (section 2.1), triplestore backend based on SimPhoNy-OSP

CORE are provided and a set of initial simulation data from the success stories (section 3). Of which, the source

code and examples of using the V&V services are found on the OpenModel GitHub repository:

https://github.com/H2020-OpenModel/Validation_Benchmarking.

We emphasize that the goal of this deliverable is to describe the underlying V&V service which includes mecha-

nisms for collecting and storing data (curation), however, this delivery does not yet cover all success stories as

data for these is not yet available. The deliverable though enables straightforward integration and inclusion of

such data once its available and consequently the support for V&V specific for these use cases is supported.

4 https://scikit-learn.org/stable/

https://github.com/H2020-OpenModel/Validation_Benchmarking

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 7 | 28

2023-11-30

For the successful completion of D4.9 and deployment of validation and benchmarking services, the following
workplan was completed:

1. Delivery of a graph database to store simulation data
2. Development of AI-based verification and validation services
3. Access of the data through the deployed database

2. OVERVIEW OF THE V&V SERVICES

As previously mentioned, the V&V services contain three key components (Fig. 2): firstly, an API for managing

requests between the platform and the core of the OpenModel services. Secondly, the tools for performing

validation and verification, which are a series of AI methods that can perform, machine learning (ML), statistical

and analysis on simulation data. Lastly, the CUDS interface are methods for connecting with the knowledge

base backend (currently based on the open source APACHE Jena Fuseki backend), which is the CUDS database.

Fig. 2: Overview of the architecture of the V&V services.

For D4.9, the V&V service is deployed as a Python based OpenModel App which allows facile access to the tools

in the service. A breakdown of the different scripts is as follows:

- data.py: tools for retrieving simulation data, uploading and retrieving datasets in the knowledge base.

- query.py: tools for performing queries on data stored in the CUDS database.

- validation.py: contains ML methods for performing verification and validation.

- view.py: contains visualization tools.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 8 | 28

2023-11-30

Furthermore, the relationship of the packages mentioned above to the architectural design depicted in Fig 2 is

illustrated further in Fig 3. The entire V&V app is deployable as a service on the OpenModel Infrastructure and

will be deployed in the next release planned. It will enable any OpenModel workflow or service to access the

V&V app both through an API (own Restful API, and Fuseki API), as well as functionally through pythonic API, all

with proper access right s provisioning provided by the advanced middleware technology implemented in the

OpenModel Infrastructure (OMI).

Fig. 3: Depiction of how the Python packages in V&V relate to the architecture.

Currently, data.py contains specific functions for parsing and retrieving data from LAMMPS and Quantum Es-

presso files. However, with the development of wrappers for SimPhoNy CUDS and AiiDA data nodes in WP3

(Task 3.4, D3.5), along with existing wrappers for DLite and AiiDA, integration between the declarative work-

flows and the V&V services is possible. Furthermore, it is important to note that data from DLite or SimphoNy

can be parsed as the V&V services are agnostic to the type of CUDS provided. Regardless, through using the

methods found in the V&V services, it is possible to manage and stored simulation data for verification and vali-

dation which we demonstrate herein. This integration with the wrappers is the integration of the OpenModel

use cases into the V&V service as mentioned above, where further work will continue with D4.10 (V&V wrap-

pers).

2.1 A GRAPH DATABASE FOR SIMULATION DATA

There are numerous approaches to implement a data base accessible from the network, and hence integrate

able into a web or other platforms such as the OpenModel workflow system. These include traditional SQL da-

tabase systems, including open-source solution such as Maria DB and PostgreSQL. These rely on predefined

linked data tables designed according to strict schemas developed on a case per case basis as they need to

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 9 | 28

2023-11-30

closely map the actual transactions made in a domain. As OpenModel caters for a wide range of complex com-

putational problems with vastly dynamic schemas this approach is not the best. Other types of so called

“NoSQL” databases including MongoDB for example, allow for freer, entity-attribute-value models to be used.

These allow more easily to account for the hierarchical interrelated structure of the data needed for materials

innovation workflows in general and computational modelling in particular. An Entity Attribute Value model

(E-A-V) is essentially a triplet of data items that map an entity to a value through simple relation (usually a has-

a). While useful for many applications, it is rather limited to elements relating a property to a value. An exten-

sion of E-A-V models, that may be seen as a generalisation is the use of Subject-Predicate-Object triplets which

can relate a subject (say an atom, or a material) to an object).

For this deliverable, Apache Jena Fuseki is used as a knowledgebase for storing simulation data and simulation

workflows, in alignment with the Open Model Infrastructure (OMI). Fuseki natively supports RDF data and con-

tains a SPARQL endpoint, which means it’s a natural choice for storing and retrieving simulation CUDS for the

V&V services. Furthermore, integration with the APACHE Jena Triple Store TDB5 which provides persistent and

robust storage layer for the V&V services. Since the CUDS is semantic-based (Fig. 4), Fuseki offers advantages

over using other unstructured and document-orientated databases such as MongoDB, which primarily supports

NoSQL. Furthermore, Fuseki is open source, allowing for flexibility when developing APIs and other functionally

over commercial triple stores such as GraphDB, making Fuseki a good choice for the knowledgebase in the V&V

services. We note that Fuseki6 is merely a middle ware to provide a SPARQL endpoint to TDB.

Fig. 4: Example of triples stored in the Fuseki knowledge base.

For the demonstrations, the data from the simulation is managed using the open simulation platform Sim-

PhoNy,7 where ontologies are used for creating triplets. Moreover, the engine for SimPhoNy works with SQlite,

RDFlib,8 and renders any existing engine to become a triple store that directly takes data models from an ontol-

ogy. The generated CUDS is stored in the knowledge base (CUDS databased) and is retrievable through SPARQL

5 https://jena.apache.org/documentation/tdb/index.html
6 https://jena.apache.org/documentation/fuseki2/index.html
7 ‘SimPhoNy OSP Core’. 2023. [Online]. Available: https://simphony.readthedocs.io/en/v4.0.0/
8 ‘SQLite’. 2023. [Online]. Available: https://www.sqlite.org/index.html

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 10 | 28

2023-11-30

query, which are performed via basic API functions found in data.py and query.py (Fig.5). Where a user can pro-

grammatically create and upload data to a new dataset in Fuseki, add data to an existing dataset, and retrieve

data for verification and validation.

Fig. 5: Overview of the Jena Apache architecture and integration with V&V services through a Fuseki API.

2.2 VALIDATION AND BENCHMARKING

Our approach for V&V relies on the availability of data and suitable machine learning (data based) models. The

approach does two things:

1. Taking a modelling workflow as input, attempts to identify an existing workflow in the knowledge data

base, either from previous experiments or modelling.

a. If found, it uses all available data to return a measure of uncertainty

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 11 | 28

2023-11-30

b. If not found it does the following:

i. It collects nearest results.

ii. It creates on the fly a machine learning model.

iii. Verifies the model internally.

iv. Predicts the result of the workflow using the model.

v. Returns the result.

We note that this is a crude simplistic description of a state-of-the-art ongoing research. The basic functionality

is continuously updates and mode enhanced models will be added including conformal prediction.

With the development of frameworks and methods for storing and managing data from simulation, many ML

methods for validation exist which would need to be explored. For example:

1. Linear Regression: Linear regression is a statistical method for modelling the relationship between

a dependent variable and one or more independent variables. The goal of linear regression is to

find the best-fit line through the data points that minimizes the sum of the squared residuals.

2. Logistic Regression: Logistic regression is a statistical method for analysing a dataset in which

there are one or more independent variables that determine an outcome. The outcome is meas-

ured with a dichotomous variable (in which there are only two possible outcomes). The goal of

logistic regression is to find the best-fit line through the data points that maximizes the likelihood

of observing the data given the model.

3. Support Vector Machines (SVM): SVM is a machine learning algorithm used for classification and

regression analysis. It works by finding the hyperplane that best separates the classes in the fea-

ture space. SVM tries to maximize the margin between the hyperplane and the nearest data

points from both classes.

4. Decision Trees: Decision trees are a type of machine learning algorithm used for both regression

and classification tasks. The algorithm works by recursively partitioning the data into subsets

based on the values of the input variables. At each node, the algorithm selects the input variable

that produces the most homogeneous subsets with respect to the target variable.

5. Random Forest: Random Forest is an ensemble machine learning method used for classification,

regression and other tasks. It works by constructing a multitude of decision trees at training time

and outputting the class that is the mode of the classes (classification) or mean prediction (regres-

sion) of the individual trees.

6. Gradient Boosting: Gradient boosting is a machine learning method used for both regression and

classification tasks. The algorithm works by building an ensemble of decision trees sequentially,

where each tree tries to correct the errors of the previous tree.

7. Neural Networks: Neural networks are a class of machine learning algorithms modelled after the

structure and function of the human brain. They are composed of multiple layers of intercon-

nected nodes.

Furthermore, the Data-Driven Materials Discovery group at UCL, are developing implantations of the delta ()

method9

10. In this method, an error between experimental and simulation () data is calculated and through

9 : Liew, J., Metamodel Verification & Validation Approach for Energy Materials Applications (2021)
masters’ dissertation, UCL
10 K. Atz, C. Isert, M. N. A. Böcker, J. Jiménez-Luna, and G. Schneider, Δ-Quantum Machine-Learning for Medicinal Chemistry, Phys. Chem.
Chem. Phys. 24, 10775 (2022).

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 12 | 28

2023-11-30

ML unknown  values are predicted, Fig. 6. Notionally, this approach would mean that error approximations

could be applied to simulation results which would provide a metric on the accuracy of the data. This would

provide an accessible method for the validation for simulation data produced for the V&V services owing to its

simplicity. However, with the ongoing work for other deliverables, such as deep learning and data scraping

wrappers, which are necessary for full development of the V&V services, other ML models will be employed for

the purpose of this demonstration.

Fig. 6: a)  between experimental and simulation data b) prediction of .

For the verification and validation, a ML model should be able to answer the following types of user questions:

i) are the results converged? ii) will the simulation parameters selected give reasonable/ expected results? iii)

how does simulation results compare to experiment or any other benchmark data? The examples in these re-

sults emphasise ii) and iii), where predictions of target observables (band gap and density) are made using data

stored in the knowledge base. The predicted observables are then compared to experiment, which provides

insight on the validity of the simulation parameters chosen and verifies the target observables.

Currently, validation.py in the V&V services offers four machine learning methods, namely, Gaussian process

regression, random forest regression, Bayesian regression, and neural networks. These methods have been

tested and compared (Fig. 7) for predicted the band gap of silicon which is further demonstrated in Example 2.

For benchmarking the ML methods, the models were trained on the band gap energy of silicon as a function of

different kinetic energy cut-off values (10-20 eV) from Quantum Espresso calculations. Subsequently, the mod-

els made predictions at a new cut-off value of 21 eV based on the training data, where the prediction was

benchmarked against the band gap value at 21 eV from a simulation. The models had predictions errors of

2.47, 2.46, 2.43, and 2.81% for random forest, Gaussian, Bayesian regressions, and neural network, respec-

tively. The ML models give reasonable accuracy, but it’s important to emphasise that the small training set

compromises the overall accuracy of the models, but for the purpose of demonstrating the capabilities of the

V&V services, is sufficient. In that regard, given the close accuracy values of the different models, random for-

est regression is chosen as the ML model for the use case examples demonstrated below. Furthermore, the

continual exploration and development of other sophisticated and possibly more suitable ML methods will be

undertaken.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 13 | 28

2023-11-30

Fig. 7: Comparison between different ML methods on predicting the band gap value of silicon.

For the examples and demonstration Random Forest regression (RFR) will be used (Fig. 8). RFR assembles mul-

tiple decision trees during training and outputs the average prediction of individual trees, where the averaging

of multiple trees affords more stable predictions than usage of a single tree. Additionally, the ability to handle

high-dimensional data and mitigate overfitting makes RFR an excellent choice of prediction of simulation ob-

servables where multiple variables and parameters maybe needed for testing.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 14 | 28

2023-11-30

Fig. 8: Diagram of Random Forest regression method.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 15 | 28

2023-11-30

3. EXAMPLES AND DEMONSTRATIONS

For this deliverable, construction of a suitable database system to serve as the knowledge base for the V&V
services, ML methods and the development of APIs and CUDS interfaces for uploading and retrieving simula-
tion data from the knowledge base for verification and validation have been accomplished. Therefore, in this
section examples from OpenModel use cases are used to illustrate the capabilities of the verification and vali-
dation services. Herein, two examples are used the D5.5 use case (density of water with LAMMPS) and Success
Story 1 (SS1, Quantum Espresso calculations). The source code for the examples shown is found on the GitHub
repository: https://github.com/H2020-OpenModel/Validation_Benchmarking/tree/main/examples.

3.1 EXAMPLE 1: D5.5 USE CASE

For the creation of simulation data for validation and benchmarking, atomistic simulations were conducted on

water using the Large-scale Atomistic/Molecular Massively Parallel Simulator (LAMMPS) package11 and the

Moltemplate wrapper12. Moltemplate is a generalized cross-platform text-based molecule builder for LAMMPS.

Utilization of such a wrapper provides flexibility and simplicity for simulation execution and data management

for subsequent validation and benchmarking as outlined in Fig. 9. Although this example is also employed for

D5.5, adoption of the same use case ensures ease of integration between different work packages, and we

note that simulation data for other systems will be generated to ensure robustness of the systems developed

in D4.9.

Fig. 9: Workflow of LAMMPS/Moltemplate simulation of water.

Moltemplate constructs a template file ‘.lt’ for the parsing of variables which are executed by the LAMMPS en-

gine (Fig. 10). This is beneficial as the nature of variable input for simulation via .lt files allows the mass genera-

tion of data for verification and validation through flexible control of input parameters. Currently, the variable

11 A. P. Thompson et al., ‘LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum
scales’, Computer Physics Communications, vol. 271, p. 108171, Feb. 2022, doi: 10.1016/j.cpc.2021.108171.
12 A. I. Jewett et al., ‘Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics’,
Journal of Molecular Biology, vol. 433, no. 11, p. 166841, May 2021, doi: 10.1016/j.jmb.2021.166841.

https://github.com/H2020-OpenModel/Validation_Benchmarking/tree/main/examples

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 16 | 28

2023-11-30

definition is very syntactic to Moltempalte, with efforts ongoing for the creation of semantic definitions in

other work packages.

Fig. 10: Input variable for water_aa.lt.

For this specific example of the density of water, which is the desired physical observable is a value in the out-

put log for LAMMPS (Fig 11). Therefore, the development of functions that can extract the relevant simulation

data from the output log have been developed, providing integration with the next stage which the develop-

ment of semantic methods for data storage. These are prototypes for the wrappers which will be developed in

WP3, such as AiiDA to SimPhony and AiiDA to DLite plugins, which are out of the scope of this deliverable.

Fig. 11: LAMMPS simulation output log.

For this example, the simulation data is post processed for verification and validation but is in envisaged that

with the further development of the OpenModel platform, simulation CUDS for V&V will be generated from

the OTEAPI pipelines or data nodes from AiiDA, which will be developed for the V&V services in D4.10. In this

example, data for 12 LAMMPS simulations at varying temperatures (273.15-383.15 K) are stored as a data for

validation, verification, and benchmarking (Fig 12).

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 17 | 28

2023-11-30

Fig. 12: Workflow for the prediction of water density using LAMMPS and the V&V architecture.

Using SimPhony-osp, a CUDS is generated from the simulation using Python and a custom ontology. In this ex-

ample, the relevant input parameters from the LAMMPS simulations, such as temperature, pressure etc., along

with desired output, density, are retrieved from the LAMMPS log full using methods found in data.py. The

CUDS (Fig. 13) is then stored in the SimPhoNy backend through committing the session. Again, it is important

to emphasize that these are for the demonstration purposes, as the V&V services can work with any format of

CUDS (Tutrle, Json, YML) and any ontology, such as EMMO. Since the V&V services utilises CUDS, they connects

to the OpenModel interoperability framework via the open source dlite-cuds package13 developed in the Onto-

Trans and OpenModel projects. This will be further demonstrated in D4.10.

13 https://github.com/EMMC-ASBL/dlite-cuds

https://github.com/EMMC-ASBL/dlite-cuds

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 18 | 28

2023-11-30

Fig. 13: Graph of LAMMPS simulation CUDS.

Furthermore, the CUDS is also exported in Turtle syntax with an example CUDS given in Fig. 14. Additionally, it

is possible to export the CUDS into multiple different RDF supported syntaxes, which allows flexible usage of

simulation CUDS. It is also important that the knowledgebase can work with multiple formats of CUDS gener-

ated with SimPhoNy or other software such as DLite. Therefore, data.py hosts functions for conversion of data

to facilitate the conversion of CUDS to desired form for the knowledgebase. In which case, a predefined CUDS,

for example from OTEAPI pipelines or AiiDA data nodes, can be provided to the V&V services and stored in the

knowledge base.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 19 | 28

2023-11-30

Fig. 14: CUDS (Turtle) for LAMMPS simulation data created with SimPhoNy-osp.

Through functions in data.py, the CUDS.ttl is pushed to the knowledge base, which is queried and retrieved by

the V&V methods in validation.py. The management of large dataset and databases created when employing

validation services for simulation results necessitates creation of methods for fast and reliable data retrieval. In

that regard, the Fuseki API (Fig .15) in the V&V services, facilitate efficient creation of datasets and retrieval of

CUDS and simulation data.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 20 | 28

2023-11-30

Fig. 15: Example workflow for managing data through the Fuseki API.

In Fig. 15, methods for managing CUDS data stored in the knowledge base are depicted. Through the API and

functions found in data.py, the user can create a new dataset (ds0) for storing the CUDS, create_fuseki_da-

taset(). Furthermore, the CUDS is then pushed to the new dataset through upload_to_dataset(). Where the

relevant simulations data is retrieved through a SPARQL query on the dataset. In query.py a function for creat-

ing generic SPARQL queries exists, sparql_query(), which allows a user retrieve data from any CUDS supplied by

the ontology namespace, subject, predicted and object. In conjunction with query_data_from_fuseki() the rele-

vant simulation data, in this case density, is retrieved for verification and validation.

Importantly, the CUDS stored in the knowledge base is a graph database (Fig. 16), where the LAMMPS simula-

tion data is stored as triplets.

Fig. 16: Graph of relationships and classes in the ontology stored in the knowledge base.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 21 | 28

2023-11-30

The density data retrieved from the knowledge base is then subject to random forest regression (RFR) available

in validation.py (Fig 17). Through RFR, the density data for simulations at temperature 273.15-373.15 K is used

for training and a prediction for the density of water at a new simulation at 383.15 K is made.

Fig. 17: Example workflow for performing ML on CUDS stored in the knowledge base.

The RFR model predicts that the density at 383.15 K is 0.963 gcm-1, and an error against a benchmark experi-

mental value at this temperature (0.958 gcm-1)14 is given as 0.48%. In that regard, it is possible to infer that us-

ing the simulation methods and parameters provided in the CUDS to simulate the density of water at 383.15 K

has an error of 0.48% compared to experiment, validating the simulation methods used. Although an adequate

prediction, it is important to note that the accuracy of the data would be improved with a far large dataset to

train the model on, but for this example it demonstrated the capabilities of the verification and validation ser-

vices. Furthermore, through using add_meta_data() function used in data.py, the dataset on the knowledge

base is updated with the error of the model as calculated with the V&V services.

14 https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 22 | 28

2023-11-30

3.2 EXAMPLE FOR SS1

For this example, we consider the band gap of bulk silicon as calculated with Quantum Espresso, which repre-

sents key elements of SS1 (Fig 18). The band gap of silicon at different kinetic energy cutoff values (ecutwfc),

10-20 eV, is calculated and is used to train a prediction of the band gap at 21 eV.

Fig. 18: Workflow for V&V on Si band gap calculated with Quantum Espresso.

As with the previous example, the CUDS is generated in Python using SimPhoNy and stored in the Fuseki

knowledgebase through the API available in the V&V services (Fig. 19).

Fig. 19: Workflow for Quantum Espresso simulation CUDS as generated through SimPhoNy.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 23 | 28

2023-11-30

The band gap data from the QE output file ‘scf.out’, is parsed through SimPhoNy, which is ontologized to create

a Python CUDS and triplets (Fig. 20). Again, it is necessary to emphasize that with continual developments of

other work packages and deliverables, this step may not be necessary, and band gap data retrieved from AiiDA

data notes could be retrieved by SimPhoNy and pushed to the knowledge base.

Fig. 20: Graph of Quantum Espresso simulation CUDS.

The Python CUDS (is exported to Turtle format, which contains the triplets, IRI, and simulation data (Fig. 21).

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 24 | 28

2023-11-30

Fig. 21: CUDS (Turtle) for Quantum Espresso simulation data created with SimPhoNy-osp.

The simulation data is then uploaded to the knowledge base using the functions of the Fuseki API found in

data.py (Fig. 22). Importantly, a new dataset can be created for the band gap data (in this case ds1), which al-

lows the separation of datasets in the knowledge base, affording efficient data management.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 25 | 28

2023-11-30

Fig. 22: Workflow of managing data through the Fuseki API.

Using the API in query.py, the band gap data stored in the knowledge base is retrievable and queried for verifi-

cation and validation. Again, the data stored in the knowledge base is stored as triplets (Fig. 23) where ontolog-

ical relationships are represented, affording the capability for semantic retrieval of data.

Fig. 23: Graph of relationships and classes in the ontology stored in the knowledge base.

The CUDS stored in the knowledge based is then queried using SPARQL through the Fuseki API (Fig. 24). The

retrieved data from the knowledge base is subject to random forest regression, found in validation.py, for pre-

dicting the band gap energy at a new cutoff energy of 21 eV.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 26 | 28

2023-11-30

Fig. 24: Example script for performing ML on simulation data.

The model predicts that the new bandgap at ecutwfc = 21 eV is 1.14 eV, which an error estimation of 1.96 %

compared the experimental band gap of silicon which is 1.12 eV.15 From this, it can be inferred that a simula-

tion with a kinetic cutoff energy at 21 eV deviates by around 2% from experiment. As with example 1, the error

predicted from the V&V is added to the database using add_meta_data(). Again, the model makes a reasona-

ble prediction compared to benchmarked values, but better accuracy would be achieved through training

larger datasets, but the example here demonstrated the capabilities and functionality of the V&V services.

15 https://toshiba.semicon-storage.com/eu/semiconductor/knowledge/faq/diode_sic-sbd/sic-
sbd001.html#:~:text=Si%20(Silicon)%20has%20a%20band,wide%2Dband%2Dgap%20semiconductors.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 27 | 28

2023-11-30

4. NEXT STEP

In this report we have demonstrated the V&V services available in OpenModel. The main objectives of this de-

liverable, namely, delivery of a database system to store simulation data has been met, with examples of func-

tionally shown.

Further development of the V&V will be undertaken in task 4.5 and D4.10 (deep learning wrappers). In this

task, wrappers for the V&V service will be developed, which will facilitate integration of verification and valida-

tion methods with the workflows and OTEAPI pipelines developed in other tasks. Furthermore, completion of

D3.5 will also provide integration between SimPhoNy and AiiDA plugins as stated in the description of action,

which will provide seamless data transfer between the V&V services and pipelines. Moreover, due to the Ju-

pyterHub interface of the OMI platform, the possibility of deploying the V&V services in the launcher (Fig. 25),

which will be explored during D.10.

Fig. 25: Example of V&V services app in the launcher of OMI.

D4.9 - Creation of a validation
and benchmarking database

© OpenModel Consortium CONFIDENTIAL 28 | 28

2023-11-30

5. ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 953167.

This document and all information contained herein is the sole property of the OpenModel Consortium. It may

contain information subject to intellectual property rights. No intellectual property rights are granted by the de-

livery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s).

The content of this document does not reflect the official opinion of the European Union. Responsibility for the

information and views expressed herein lies entirely with the author(s).

All rights reserved.

