

2022

LOUIS PONET (EPFL)

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE – EPFL
BATIMENT CE 3316 STATION 1, 1015, LAUSANNE, CH

Ref. Ares(2023)531133 - 24/01/2023

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 1 | 12

2023-01-24

WP4-D4.4-EXEFLOW DEPLOYMENT BASED ON

VANILLA AIIDA INTEGRATION OF CUDS

D4.4:EXECFLOW DEPLOYMENT BASED ON

VANILLA AIIDA INTEGRATION OF CUDS

DOCUMENT CONTROL

Document Type Deliverable Report

Status Final

Version 1.0

Responsible Louis Ponet (EPFL)

Author(s) Louis Ponet (EPFL)

Release Date 2022-02-14, 2023-01-24

ABSTRACT

OpenModel will initially be focused on using AiiDA as a workflow executor. To this end an interface between

OpenModel and AiiDA is being developed. Since AiiDA has an internal data representation of data and processes

that mutate and create data, the first and maybe most important part of the interface is to establish mapping

between the OpenModel Common Universal DataStructure (CUDS) and AiiDA DataNodes. The final architecture

for the OpenModel CUDS is not yet in place, making it necessary to develop a way to generate a semantic repre-

sentation of any AiiDA DataNode, which can subsequently form the basis of further OpenModel CUDS architec-

ture decisions. For the time being, DLite was chosen as the library to semantically represent AiiDA DataNodes.

CHANGE HISTORY

Version Date Comment

0.1 2022-02-14 First Draft, Louis Ponet

0.2 2022-02-20 Louis Ponet

1.0 2022-02-28 Final, Louis Ponet

1.0 2022-02-28 Review by technical Manager

1.0 2023-01-24 Added Request from EC

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 2 | 12

2023-01-24

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 3 | 12

2023-01-24

TABLE OF CONTENT

Document Control ... 1

Abstract ... 1

Change History .. 1

Dissemination level ... 2

Table of Content ... 3

List of Figures .. 4

1 INTRODUCTION .. 5

1.1 DLITE [1] ... 5

1.2 Aiida [3] ... 6

2 Aiida-cuds [4] .. 6

2.1 DEMONSTRATING EXAMPLES .. 7

2.1.1 EXAMPLE 1: KPOINTSDATA ... 7

2.1.2 EXAMPLE 2: ORBITALDATA .. 8

3 BIBLIOGRAPHY .. 11

4 ACKNOWLEDGMENT .. 12

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 4 | 12

2023-01-24

LIST OF FIGURES

Figure 1: A screenshot from of the aiida-cuds GitHub repository. The actual AiiDA-CUDS interface code can be

found in the aiida-cuds subdirectory, static datamodels in the entities subdirectory and scripts for running and

testing the interfaces in the scripts subdirectory. .. 7

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 5 | 12

2023-01-24

D4.4-EXECFLOW DEPLOYMENT BASED ON

VANILLA AIIDA INTEGRATION OF CUDS

1 INTRODUCTION

The goal of this deliverable is to develop an interface between semantically annotated OpenModel CUDS and

AiiDA DataNodes. These DataNodes are stored in an internal AiiDA DataBase which is usually a Postgres Data-

Base. These nodes not only hold the actual data attributes, but also some metadata that AiiDA uses to track the

data provenance. This metadata, however, does not semantically describe the contents of the DataNodes, but

rather their connectivity and unique identifier. The initial goal is to simply be able to translate between seman-

tically defined DLite data and AiiDA DataNodes.

1.1 DLITE [1]

DLite employs a semantic datamodel that can be supported by an underlying ontology. Data in DLite is repre-

sented as an Instance, identified by a UUID and described by its MetaData. This description contains a set of

named properties and dimensions. Each property has a given basic type, e.g. float, and potentially the dimensions

that describe the amount of this basic type can be found in the property. If no dimensions are present, the prop-

erty contains a single entry of its type, i.e. it is a scalar. The datamodel used by DLite is an example of a Struc-

tOfArrays [2] design.

Upon creating an Instance that is described by some metadata, the extent of each of the dimensions must be

set, which allows to create an empty Instance with the correct sizes of its properties. These can then be filled out

by the actual data that will be contained by the Instance.

The fact that the datamodel of an Instance is fully described by the attached metadata forms the basis for easily

converting certain data between different datamodels. It allows for code to reason about the layout and types

of the data contained in certain Instances.

This conversion process can be further aided with an accompanying Ontology that further describes what each

of the properties are semantically. For example, one datamodel of a crystalline structure could store the positions

of atoms in a property with name atomic_positions, while another might store it in a property simply named

positions. Even though these two properties are designated with different names, they mean the same thing.

If an ontology is then used to describe the meaning of each of the properties inside the datastructures, automatic

conversion between the two becomes feasible.

https://github.com/sintef/dlite
https://en.wikipedia.org/wiki/AoS_and_SoA
https://en.wikipedia.org/wiki/AoS_and_SoA

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 6 | 12

2023-01-24

The current deliverable establishes an interface between DLite Instances and AiiDA DataNodes, which can be

used inside AiiDA WorkChains to perform calculations with. This forms the basis for future work, as it signifies to

some extent the exit point of the data used in OpenModel, and the execution software represented by AiiDA.

1.2 AIIDA [3]

AiiDA uses the concept of Nodes. These are entries in an underlying database which can represent Data

(DataNodes) or Processes (ProcessNode). In this report we focus on the DataNodes. Each node is represented by

some metadata that is identical for each node, and a blob of data that holds the actual data of said node. There

are many different DataNodes, each a subclass of DataNode class, which holds their respective data, and usually

define validation and storage methods. The blobs of data that are of interest can be accessed through the

node.attributes dictionary of the DataNodes.

The main difficulty with respect to developing an interface layer between DLite Instances and AiiDA DataNodes,

is that the latter hold arbitrarily structured data. This means that the attributes of a DataNode can be an arbitrary

nesting of dictionaries and lists, thus being a mix of both the StructOfArrays [2] and ArraysOfStructs [2] data

paradigms. The unpacking and restructuring of the DataNodes attributes into the pure StructOfArrays design of

DLite, while maintaining the former’s structure, is the main difficulty that has to be overcome, and will be the

main topic of the remainder of this report.

2 AIIDA-CUDS [4]

AiiDA provides a way of extending the core library with plugins. These usually define a set of WorkChains, Calc-

Jobs, CalcFunctions and Data. This means that there is no concrete set of possible AiiDA DataNodes, thus requir-

ing a generic way of generating DLite metadata for a given DataNode.

DLite employs a strict model of StructOfArrays entities rather than ArraysOfStructs. An ArrayOfStructs, or any

attribute of an AiiDA DataNode that encompasses another class or dict will be referred to as nested data. AiiDA

DataNodes in general do contain nested data, making it not a priori clear how to map to DLite datastructures.

The solution to this problem is to unpack the AiiDA DataNodes into a strict StructOfArrays, while annotating the

property names to capture the level of nesting. The exact annotation method might subject to change, but the

general concept will remain the same.

The developed code can be found in the github repository [5].

https://aiida.readthedocs.io/projects/aiida-core/en/latest/index.html
https://en.wikipedia.org/wiki/AoS_and_SoA
https://en.wikipedia.org/wiki/AoS_and_SoA
https://github.com/H2020-OpenModel/aiida-cuds
https://github.com/H2020-OpenModel/aiida-cuds/aiida_cuds/cuds.py

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 7 | 12

2023-01-24

Figure 1: A screenshot from of the aiida-cuds GitHub repository. The actual AiiDA-CUDS interface code can be found in the aiida-cuds

subdirectory, static datamodels in the entities subdirectory and scripts for running and testing the interfaces in the scripts subdirectory.

2.1 DEMONSTRATING EXAMPLES

To explain the design decisions that were taken it is most instructive to look at some examples. The first example

demonstrates the process for a trivial case where the AiiDA DataNode does not have any nested data. The second

example is more involved and highlights the issues that arose during the development.

2.1.1 EXAMPLE 1: KPOINTSDATA

The attributes of a certain KpointsData node are as follows:

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 8 | 12

2023-01-24

Using the translation, this generates the following DLite metadata:

We can see that the correct dimensions and properties were generated. The attributes of the KpointsData are

then trivially mapped to the properties of the corresponding DLite datastructure.

2.1.2 EXAMPLE 2: ORBITALDATA

Here we consider a more involved AiiDA DataNode that

represents the information of the atomic orbitals to be

used in a Wannier90 workchain [6]. The structure of such

a node is as shown on the right. We see here that the top-

level attribute orbital_dicts is an array of dictionar-

ies, i.e. an array with nested data or an ArrayOfStructs. To

construct a corresponding DLite datastructure we thus

have to convert this to a StructOfArrays representation,

while encoding the nesting level in order to allow for a re-

verse conversion from the DLite datastructure back to an

AiiDA OrbitalData node.

https://github.com/aiida-team/aiida-wannier90

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 9 | 12

2023-01-24

The generated metadata looks as follows:

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 10 | 12

2023-01-24

As can be seen from the above, every attribute from the nested dictionary is translated into a DLite property

with name orbital_dicts_dict_<attribute>, e.g. orbital_dicts_dict_angular_momentum will be

an array with the same length as the original array, with the values corresponding to the angular_momentum

attribute of each of the dictionaries that were in the orbital_dicts attribute of the AiiDA OrbitalData node.

Using the _dict_ in a property name thus allows us to encode the level of the nested data, which is then used

when the AiiDA DataNode is reconstructed.

A more complete example [7] to demonstrate how to run an AiiDA Quantum-Espresso [8] pw CalcJob [9] starting

from DLite data has also been developed.

https://github.com/H2020-OpenModel/aiida-cuds/blob/main/scripts/dlite_aiida_example.py
https://www.quantum-espresso.org/
https://aiida-quantumespresso.readthedocs.io/en/latest/module_guide/calculations.html#module-aiida_quantumespresso.calculations.pw

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 11 | 12

2023-01-24

3 BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

https://github.com/sintef/dlite

https://en.wikipedia.org/wiki/AoS_and_SoA

https://aiida.readthedocs.io/projects/aiida-core/en/latest/index.html

https://github.com/H2020-OpenModel/aiida-cuds

https://github.com/H2020-OpenModel/aiida-cuds/aiida_cuds/cuds.py

https://github.com/aiida-team/aiida-wannier90

https://github.com/H2020-OpenModel/aiida-cuds/blob/main/scripts/dlite_aiida_example.py

https://www.quantum-espresso.org/

https://aiida-quantumespresso.readthedocs.io/en/latest/module_guide/calculations.html#module-ai-

ida_quantumespresso.calculations.pw

WP4-D4.4-EXEFLOW
DEPLOYMENT BASED ON
VANILLA AIIDA INTEGRATION
OF CUDS

© OpenModel Consortium CONFIDENTIAL 12 | 12

2023-01-24

4 ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 953167.

This document and all information contained herein is the sole property of the OpenModel Consortium. It may

contain information subject to intellectual property rights. No intellectual property rights are granted by the de-

livery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s).

The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the

information and views expressed herein lies entirely with the author(s).

All rights reserved.

