

2023

ALESSIO MORA (UNIBO)

LUCA FOSCHINI (UNIBO)

ALESSANDRO CALVIO (UNIBO)

Ref. Ares(2023)713304 - 31/01/2023

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 1 | 17

2023-01-31

D4.2 - ONTOFLOW MVP DEPLOYMENT

WITH INITIAL MCO

DOCUMENT CONTROL

Document Type Other

Status Final

Version 1.0

Responsible Luca Foschini (UNIBO)

Author(s) Alessio Mora (UNIBO), Alessandro Calvio (UNIBO), Luca Foschini (UNIBO)

Release Date 2023-01-31

ABSTRACT

This deliverable report presents the activities carried out in WP4 in order to develop the component named

OntoFlow. In particular, this document focuses on the architecture of OntoFlow, the entity which manages the

knowledge base and searches for all the possible mapping routes inside the semantic data. A mapping route is a

chain of ordinate steps or relations that connect one concept in to another and provide a link between the input

concepts and the desired output. In this document, we mainly focus on the elements that compose OntoFlow,

their structure and interactions. For the sake of clarity, the document will also contextualize the proposed archi-

tecture by giving some insights from a practical point of view.

CHANGE HISTORY

Version Date Comment

0.1 2023-01-15 First Draft

0.2 2023-01-30 Described workflow generation and added more details in sec. 4

1.0 2023-01-30 Final / Reviewed by Technical coordinator

DISSEMINATION LEVEL

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 2 | 17

2023-01-31

TABLE OF CONTENT

Document Control ... 1

Abstract ... 1

Change History .. 1

Dissemination level ... 1

Table of Content ... 2

1 Introduction.. 3

1.1 Overview .. 3

1.2 Deviation From Annex 1 .. 3

2 OntoFlow General Architecture ... 4

3 OntoFlow Architecture: OntoFlowKB ... 5

3.1 Tripper and Stardog backend .. 6

4 OntoFlow Architecture: OntoFlowDM ... 7

5 YAML Generation ... 10

6 OntoFlow in action: Datamodel GENERATION ... 11

6.1 Preparation phase: Populate the knowledge base .. 11

6.2 Configuration phase: OntoFlowDM engine configuration .. 13

6.3 Execution phase: Selection of the best routes .. 14

6.4 Final phase: Generation of YAML file .. 15

7 Code references ... 16

Acknowledgment .. 17

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 3 | 17

2023-01-31

1 INTRODUCTION

1.1 OVERVIEW

The object of this accompanying document is describing the design of OntoFlow, which is a workflow designer

and builder, with the help of a very first example of its implementation. OntoFlow is able to discover and suggest

the most suitable set of models, tools, and operations to obtain a specific output starting from certain inputs.

OntoFlow determines the best set of workflows navigating its knowledge base, matching diverse workflows ac-

cordingly to their semantics, and, in turn, understanding their relation and whether they can be used in a chain

(i.e., in series). The most suitable chain of workflows can be determined by using simple cost heuristics, or via

the use of Multi-Criteria Optimizers (MCO) as well as Machine Learning-based techniques.

OntoFlow includes two components, which are the knowledge base (OntoFlowKB) and the decision-making com-

ponent (OntoFlowDM). OntoFlowKB is a triplestore database designed to store and manage semantic infor-

mation and mapping between ontological concepts, and it is based on the efforts carried out in the related On-

toTrans project. OntoFlowDM is the component that enables the workflow decision-making operations through

the embedding or integration of different MCOs. To be maximally general, OntoFlowDM may expose a set of

interfaces to accept for MCOs.

This document will provide an in-depth look into the architecture of OntoFlow, zooming in to give more details

about the design of OntoFlowKB and OntoFlowDM, and how their synergic interactions lead to the selection of

the best workflow to execute and the generation of a workflow descriptor, as a YAML file, with a first definition

of the necessary steps. This document will not cover ExecFlow, the component in charge of the actual execution

of workflows.

1.2 DEVIATION FROM ANNEX 1

Current deliverable does not have any deviations from GA Annex 1.

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 4 | 17

2023-01-31

2 ONTOFLOW GENERAL ARCHITECTURE

Figure 1 depicts a first high-level overview of the OpenModel Platform (OMP) Workflow Support that handles

the exploration, detection, selection, and execution of the best workflows for specific use cases and relies on the

work of its two main components: OntoFlow and ExecFlow. In this context, OntoFlow is the first key component

to come into play and, through its two submodules OntoFlowKB and OntoFlowDM, is responsible for storing and

managing the semantic representation of the elements of interest for the individual use cases and for using

decision-making and MCO techniques to choose the most suitable workflow among the possible ones.

OntoFlow usually needs two inputs: the first consists of the specific ontological representation of all models,

tools, targets, and attributes related to a particular use case of interest; the second refers to the definition of Key

Performance Indicators (KPIs), i.e., metrics of interest for the chosen use case used to guide the workflow opti-

mization process. The semantic representation is stored in OntoFlowKB, integrated with existing knowledge, and

used as a starting point to identify all possible workflows that can produce the desired output. Once they have

been found, OntoFlowDM performs an optimization to determine the best workflow based not only on the de-

fined KPIs but also on ontological attributes that may, in some way, influence the final output. It is noteworthy

that the KPIs used as input may also conflict with each other (e.g., execution speed vs. result accuracy) and that,

in this case, the search process will be geared toward finding the best trade-off between them.

At the end of this first phase, the optimum workflow is identified and needs to be executed to produce the

desired result. However, it is important to point out that the workflow, at this stage, is described in purely onto-

logical terms that cannot be used by ExecFlow as is. For this reason, an intermediate descriptive file has been

designed to instrument ExecFlow. In practice, the ontological workflow is described in a declarative file that de-

tails the various steps in the workflow, the values of the input elements and how they can be retrieved, as well

as how the intermediate results are linked to the next steps. ExecFlow, the component responsible for the actual

workflow executions, starts from this descriptive file to build, piece by piece, a pipeline of steps in a way that is

specific to the actual simulation platform (e.g., AiiDA).

The following sections will provide a more in-depth discussion of the components that constitute OntoFlow's

MVP, with a focus on its implementation aspects. In the end, what is explained will be shown through a small

concrete use case that also helps to understand how the various elements work from a practical point of view.

Figure 1 - General architecture for OntoFlow and its interactions with ExecFlow

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 5 | 17

2023-01-31

3 ONTOFLOW ARCHITECTURE: ONTOFLOWKB

OntoFlowKB, depicted in Figure 2, is a triplestore-based component that provides:

 Independence from the actual vendor-specific triplestore technology.

 Storing and managing of workflow-related ontological concepts (EMMO ontology developed in WP1)

and application specific ones. The main information included concerns the definition of use case, mod-

els, tools and workflows with their attributes.

 Querying of stored ontologies by interacting with the triplestore SPARQL endpoint.

 Reasoning capabilities provided by the built-in engine able to perform reasoning query up to the OWL-

DL level1. The ability to make inferred queries allows the identification of additional workflows beyond

those directly deriving from the knowledge base.

 Information related to the mapping between ontological concepts of different application’s cases.

For the sake of demonstration, the current OntoFlow MVP architecture relies on the Stardog triplestore, a com-

mercial full-fledged solution that has been adopted in the OntoTrans project. The access to the triplestore is

mediated by a module written in Python developed as part of the Tripper interface, created by SINTEF and used

within OntoFlowDM (see next section). Tripper is an abstraction layer with the purpose of making the tool flexible

and independent from the underlying technology (e.g., Stardog, Fuseki, GraphDB, and others). In this way, other

suitable solutions, such as GraphDB or Apache Fuseki, can be easily integrated with minimal effort by developing

the relevant backend.

This architecture represents a deviation from the content of the last deliverable, D4.1. Previously, a proxy com-

ponent developed within the OntoTrans project was employed as a means to access the OntoFlowKB, in a vi-

sion to realize a triplestore-as-a-service. In fact, the proxy exposes a set of REST APIs to enable requests from

users, interacting with the knowledge base. However, in OpenModel there is no such actor as the OntoTrans

users; the knowledge base needs to be accessed to find the best suitable workflows. For this reason, Tripper,

which does not expose REST APIs, has been chosen as a better way to interact with the knowledge base, replac-

ing the proxy component.

1 The highest possible reasoning level depends on the specific triplestore technology which is being used as
backend. Not every triplestore may have the same reasoning levels available, e.g. OW-DL may be not imple-
mented.

Figure 2 - OntoFlowKB component overview

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 6 | 17

2023-01-31

3.1 TRIPPER AND STARDOG BACKEND

Different triplestores usually expose the same set of primary features but the way these are invoked may be

slightly different across vendors. In this scenario, the aim of Tripper (Figure 3) is to provide a comprehensive and

general set of APIs, which may be considered a standardization effort, so that leveraging an instance of such an

interface makes the access to triplestore transparent to the actual vendor-specific implementation.

From a technical point of view, Tripper defines an interface, inspired from rdflib, that encompasses the main

operations that it is possible to perform on a triplestore. The interface is based on several abstractions that in-

clude the concepts of Namespace, Triple and Database (intended as an independent workspace isolated from

the others). In this context, the main component on which the tool relies is the Triplestore class, which provides

an initial and basic reference implementation of the interface and delegates to specific modules, called backend,

the task of implementing the specific logic of the chosen triplestore. This structure makes Tripper a modular tool,

meaning that, by implementing the defined interface, developers can support new triplestores or extend the

functionality of existing ones.

Method signature Description

triples(triple) Returns all the matching triples

add_triples(triples) Add a sequence of triples

remove(triple) Remove all matching triples

create_database(database_name) Create a new database in the
triplestore

remove_database(database_name) Remove a database in the triplestore

list_database() List of all databases

query(query_string) Submit a SPARQL-compliant query

update(update_string) Submit a SPARQL-compliant update
query

bind(prefix, iri) Bind a new namespace in the database

Figure 3 - Tripper integration in OntoFlow architecture

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 7 | 17

2023-01-31

namespaces() List of all namespaces in the
database

serialize(destination, format) Get a serialization of the database
content at the specified destination

parse(source, location, data, for-
mat)

Add new data in the database by
parsing triples as File-like
objects, URLs and strings

Table 1 - Interface defined by the tripper

As described in the previous section, the MVP architecture of OntoFlow makes use of Stardog as a triplestore

and it was, therefore, necessary to implement a tripper-compliant backend to allow the interaction of Onto-

FlowDM with the knowledge base present in OntoFlowKB. Since the used Trippier version (v0.2.0) does not allow

the use of backends that are defined outside the tool, an independent fork was created to implement the inter-

face for Stardog (Stardog Strategy).

The Stardog Strategy makes use of two main libraries to implement the tripper interface: SPARQLWrapper2 and

PyStardog3. The former is a Python module that wraps a SPARQL-compliant endpoints to uniformly structure and

remotely execute queries; it helps in creating query invocation and in formatting result in a more manageable

format and it has been used for all those methods that involve a submission (e.g. triples, add_triples, etc.). Since

Stardog has two different endpoints for read-only queries and update ones, the backend handles two different

SPARQLWrapper instances and each method is in charge of swapping to the correct ones depending on its im-

plementation and semantics. On the other hand, PyStardog is a library that acts as a client for the Stardog

Knowledge Graph and helps with the management of both ontology, databases, and administrative tasks. It has

been used for all the rest of the methods that were not involved with the submission of query or required the

knowledge of Stardog-specific API (e.g. bind, serialize, parse, etc.).

4 ONTOFLOW ARCHITECTURE: ONTOFLOWDM

2 https://sparqlwrapper.readthedocs.io/
3 https://pystardog.readthedocs.io/

Figure 4 - OntoFlowDM component overview

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 8 | 17

2023-01-31

OntoFlowDM, depicted in Figure 4, is the decision-making engine for the OntoFlow architecture. Its main task

consists in suggesting the best ontological route that can obtain the desired target and, at the same time, opti-

mize the interested criteria. Different paths may reach the same result but differ in several other aspects (e.g.

computational effort, result accuracy, memory occupation, etc.). To achieve this result, the engine performs sev-

eral steps:

1. Retrieval of all the semantic data contained in the triplestore. This step involves all the information

related to the EMMO and the application-specific ontology. The result will represent the search space

to explore for the mapping routes.

2. The engine runs the search algorithm to navigate the ontologies and find all the possible routes produc-

ing the targeted output. In this process, the engine is also in charge of tagging each step with a cost

indication.

3. The mapping routes represent the input for the final phase in which the MCO, through the implemen-

tation of tree traversal methods or the employment of machine learning techniques, can find the best

route according to predefined criteria (decisioning phase). This step may iteratively use several different

optimizers to skim all the route up to get the final one (user-defined choices can also be involved).

At the end, the engine result is an ontological description of the workflow that describe the process to move

from the input concepts to the target one. It is noteworthy to point out that such a description is a general-

purpose representation of the process. In fact, the benefits of such a high-level description relates not only the

output itself. One of the most important additional benefits is that it can be used to automatically generate the

documentation of the process. By providing a clear and data-agnostic representation of the flow, it can help to

explain how the data is being transformed and what step are involved to obtain the final instance.

From a design perspective, OntoFlowDM is based on the definition of three different interfaces that abstract the

three phases described above. The usage of interfaces provides extreme flexibility due to the possibility of dy-

namically changing the engine's behavior at runtime and relying on a description of the logic rather than on

specific implementations. The interfaces present in the module for the current MVP regard the triplestore access,

the cost functions definition, and the decisioning logic. Next, a brief explanation of the characteristics of these

interfaces and how they have been implemented from a practical perspective.

As detailed in the previous section, the triplestore interface is implemented employing Tripper, which provides

a tool able to handle the triplestore-specific logic and access and query the knowledge base contained in On-

toFlowKB. The MVP's implementation currently uses a Stardog backend but the approach is general and other

triplestores can be easily integrated by creating the proper tripper-compliant backends.

Figure 5 - Example of YAML descriptor file for the definition of cost functions

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 9 | 17

2023-01-31

The current cost functions interface, provides a way to define the logic with which the engine tags the cost at-

tribute to each step. The configuration is fed into the engine by means of a YAML file that handles all the specific

details of the logic and is loaded at the initialization phase. In the MVP architecture, the cost is evaluated based

on the properties and relations of nodes in a graph. The configuration file may list all relevant triple predicates

and assign a fixed cost to each one. Additionally, in some cases, the cost may be based on the specific value of a

predicate. Figure 5 shows an example of the YAML file: the left image is representative of the first case, so a cost

of 5.0 is assigned each time a node has the property identified by the namespace; in the second image, the

predicate2 can have different costs based on the actual value of the relation.

It is important to note that certain relationships are mandatory for traversing the graph and moving from one

concept to another, such as the mapsTo, instanceOf, and subClassOf predicates. These relationships are essen-

tial for the navigability of the graph and must always be present in the configuration in order to accurately eval-

uate their cost.

The third interface concerns the optimization algorithms to search for the best final route to select. This step

consider the KPIs, defined at the beginning of the process, that describe the metrics to optimize (e.g. computa-

tional effort, memory occupancy, result accuracy, etc.). The way to do this, is provided to the engine by means

of the Strategy pattern that allows to create custom modules to implement the custom logic for specific uses

cases. Each module must implement the same interface that will be used after the discovery of all the possible

routes to select only the feasible one.

Figure 6 shows the interface class that must be used as a reference for the implementation of custom strategies.

The main method, get_best_routes, takes all the routes obtained during the previous steps and implement a

tree-traversal logic to choose the best one. More effort will be expended in the coming months to define a more

general interface that also takes into account the MCO modules developed in the other tasks.

From a practical point of view, the engine can be instantiated as shown in Figure 7, the constructor takes in three

parameters, that is, a binding for each interface described. From a practical point of view, the process of route

searching can be initiated by calling the "method" method, which takes as input the IRI of the desired output and

input elements (more details will be given in the example section).

Figure 6 - MCO Interface definition

Figure 7 - Usage of the OntoFlow engine

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 10 | 17

2023-01-31

The current implementation of the engine makes use of the Tripper also for the route-searching algorithm that

is realized inside the module. Furthermore, the algorithm exposed by the Tripper has two customizable fea-

tures: the first one regards the possibility to overwrite the cost that is used for the navigation predicate, in the

specific case of OntoFlow this has been exploited by substituting the cost values with the one defined inside

the cost descriptor file. On the other hand, the algorithm allows customizing the structure of the nodes to be

used for the composition of the route. OntoFlowMappingStep and OntoFlowValue are the two structures cre-

ated for OntoFlow-specific purposes (see YAML file generation in the example).

5 YAML GENERATION

The output of OntoFlow is the ontological description of a workflow that describes, as a set of concepts and

relationships between them, the final process by which the output can be derived from the available ontology.

This description, being ontologically defined, contains no information either about the actual data to be used or

about how to perform the various functions. For these reasons, the output as it is, cannot be executed directly

by ExecFlow, since it is still in abstract form.

To solve this problem, it is necessary to convert the ontology description of the workflow into a declarative de-

scription. This type of description highlights what computational elements are involved in the process by defin-

ing what input nodes, computational tasks, and how the data flow goes from one node to another. Again, since

OntoFlow does not possess the information about the concrete data to be used, such a description will mainly

contain references and access metadata to retrieve the necessary information. Concretely, such a description is

realized with a configuration file in YAML format, generated by OntoFlow from the final route chosen after the

optimization process. The YAML file is the starting point for ExecFlow to compose and execute all the blocks

necessary to create the final result.

Figure 8 - Example of the steps taken by OntoFlow. The first two steps represent route search and se-

lection of the best one. Below, the best route is converted into a pipeline description that describes the

input elements and computational nodes.

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 11 | 17

2023-01-31

6 ONTOFLOW IN ACTION: DATAMODEL GENERATION

In this section, we showcase a concrete application of OntoFlow with respect to the different elements that has

been presented in this document. The use-case regards the automatic generation of instances of datamodels

starting from data already present in the platform.

In particular, the scenario involves two different datamodels: ASEAtoms and CalcResult. ASEAtoms contains in-

formation about the atoms in a molecule, their element, position and symbols, while CalcResult contains infor-

mation about the calculated properties of a molecule, such as its energy and maximum force. The scenario also

assume the existence of two different instances of these models that constitutes the input data for the example.

On the other hand, the Molecule datamodel, which has the fields formula, energy and maxforce, represents the

final output and the schema of the final instance that we want to generate. Intuitively, this can be done by navi-

gating the relations in the ontology backwards to find the combinations of operations that allow to compute

each of the fields of the final datamodel.

For the sake of clarity, w focus only on the workflow regarding the formula property and, in particular, we simu-

late the presence of two different ways of reaching it, respectively, the first one with higher accuracy of the result

but also higher computational effort, and the second one representing the inverse case.

6.1 PREPARATION PHASE: POPULATE THE KNOWLEDGE BASE

The initial step to demonstrate the process is to fill OntoFlowKB with all the semantic information previously

discussed. Specifically, it is necessary to have the information related to the application ontology, its mappings

to the datamodels properties and the computational element (ontological functions). In particular, the IRI of the

application ontology for this case is http://example.com/demo-ontology#.

Figure 9 – Scenario high-level overview

http://example.com/demo-ontology

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 12 | 17

2023-01-31

This step can be performed using the tripper interface that, by acting as an intermediary with the triplestore, is

able to store all the information described above.

It also provides a method to create an ontological mapping of Python functions by defining a node for the func-

tion itself, its input argument and its output. To simulate the two different paths, we will insert two different

functions (Figure 11) for the Formula field characterized by different levels of accuracy and computational effort.

The last step consists of adding all the mapping to the properties of both the Molecule and ASEAtoms datamod-

els.

To have a clear vision of the situation, Figure 13 depicts the final ontological graph resulting from these opera-

tions.

Figure 10 - Creation of the tripper interface for stardog backend and creation of the namespace for the example ontology

Figure 11 - The add_function method is utilized to declare that the function 'get_formula' has an input that corresponds to

the Symbols concept and an output associated with the Formula concept. Same for the ‘get_formula_complex’ function.

The difference of input/output in the declaration of the two functions is due to a limitation in the current implementation

of OntoFlow.

Figure 12 - Mapping of the datamodels properties to the demo ontology.

The current implementation requires the properties to be linked to the out-

put values

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 13 | 17

2023-01-31

6.2 CONFIGURATION PHASE: ONTOFLOWDM ENGINE CONFIGURATION

Once all the ontological elements have been set up in the triplestore, the next step is to configure OntoFlowDM’s

engine to navigate the ontology graph and find all the best routes to get the molecule formula. As described in

the previous sections, the engine is defined in terms of three interfaces, so its configuration mainly consists of

injecting the proper components. It is straightforward that the triplestore instance defined in Figure 8 perfectly

fits for populating the first interface of the engine.

Figure 15 shows the YAML file used for defining the second interface of the engine, related to the computation

of costs. It is possible to note that the configuration contains all the mandatory predicates for the navigability of

the graph (mapsTo, subClassOf, instanceOf) and other predicates of interest for the specific application. In this

case, a hasMemoryOccupancy predicate has been used to declare the memory occupancy of input data (symbols)

and a proper cost has been defined for each of its possible values.

The last step involves the definition of the MCO logic for the choice of the final route. For the sake of simplicity,

in this example, we decided to use an MCO logic that returns the first mapping explored.

Figure 14 - Configuration of the OntoFlowDMEngine

Figure 13 - Search space for the mapping routes

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 14 | 17

2023-01-31

6.3 EXECUTION PHASE: SELECTION OF THE BEST ROUTES

The next step in the process is to run the OntoFlowDM engine to search for all mapping routes within the triple-

store. This process, triggered by the "getmappingroute" method in Figure 14, takes as input the IRI of the

datamodel to be instantiated (in this case Molecule) and the available input instances. The latter parameter is

useful for figuring out which input IRIs (atmos:symbols) will then be the final nodes of the mapping routes.

Figure 15 shows the routes that were identified by the process: as expected, the engine identified two routes,

each of which uses a different function to arrive at the final result. In the graph you can also see the costs asso-

ciated with each step calculated from the cost descriptor given as input.

Figure 15 - YAML file for the definition of costs. It contains both mandatory

predicates for the exploration of the graph (left) and custom ones for the

specific use case(right).

Figure 14 - Execution of the engine

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 15 | 17

2023-01-31

The last step of the engine is to perform an optimization and skimming operation of the mapping routes to iden-

tify the best one. As described earlier, this process is based on the definition of an MCO strategy that, in the

specific case of the 'example, implements a path-finding algorithm of the lowest cost. From Figure 15, it is evident

that the least cost route that will be chosen is number 1.

6.4 FINAL PHASE: GENERATION OF YAML FILE

The last phase of the process consists of creating the proper YAML file to input the ExecFlow component. This

operation is handled by OntoFlow which exploits the tree structure of the returned route to delegate the creation

of the different parts of the file to the nodes themselves. Each node (class OntoFlowMappingStep) defines a

recursive method _to_yaml that is in charge of creating the file portion related to its subtree and it is recalled on

each of its children nodes.

In the case of the example, the file generated by OntoFlow is the one depicted in Figure 16. It is possible to note

that the 5-steps ontological route has been compacted into three main steps. The first one, the execflow.pipe-

line for symbols, declares the pipeline responsible for retrieving, reading, and mapping the input data. For the

MVP implementation, we assume that the pipeline is already defined in some databases and referenced inside

the ontology. The second step relates to the execution of the function ‘get_formula’ which has as input the data

of the previous step (a DLite collection with label ‘symbols’) and whose output will be stored in the execution

context with the ‘get_formula_output’ name. The final step has the same semantics as the first one and it aims

to read data from the context and map them to the final structure of the output.

Figure 15 - Mapping route found by the engine

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 16 | 17

2023-01-31

7 CODE REFERENCES

This section provides all the reference links to the repositories for the OntoFlow components and the related

example:

 OntoFlowKB: https://github.com/H2020-OpenModel/OntoFlowKB

 OntoFlowDM: https://github.com/EMMC-ASBL/OntoFlow

 Tripper with Stardog backend: https://github.com/EMMC-ASBL/tripper/tree/deliverable_4.2

Figure 16 - YAML file with pipelines descriptions

https://github.com/H2020-OpenModel/OntoFlowKB
https://github.com/EMMC-ASBL/OntoFlow
https://github.com/EMMC-ASBL/tripper/tree/deliverable_4.2

D4.2 -- OntoFlow MVP de-
ployment with initial MCO

© OpenModel Consortium CONFIDENTIAL 17 | 17

2023-01-31

ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 953167.

This document and all information contained herein is the sole property of the OpenModel Consortium. It may

contain information subject to intellectual property rights. No intellectual property rights are granted by the de-

livery of this document or the disclosure of its content.

Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s).

The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the

information and views expressed herein lies entirely with the author(s).

All rights reserved.

