
 

 

 

  

 

 

 

 

 

 

 

  

2023 

FRAUNHOFER IFAM | [Firmenadresse] 

Ref. Ares(2023)712282 - 31/01/2023



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 1 | 15 

 

 

2023-01-31 

  

D2.4 CUDS CLASSES AND API 

D2.4 CUDS classes and API 

DOCUMENT CONTROL   

Document Type Technical Report 

Status Final 

Version 1.0 

Responsible Adham Hashibon (UCL) 

Author(s) Francesca L. Bleken (SINTEF), Jesper Friis (SINTEF) 

Release Date 2023-01-31 

 

ABSTRACT 

This deliverable reports on the development of the interoperability foundations for OpenModel, which are 

based on a set of common universal data structures and APIs. OpenModel combines and has contributed to 

several existing technologies for semantic interoperability developed in other EU projects and combines them 

to suite the need to the OpenModel OIP.  

 

 

 

CHANGE HISTORY 

Version Date Comment 

0.1 2023-01-09 First Draft with setup o headers. Francesca Bleken 

0.2 2023-01-29 Placed the sections into context. Wrote about OTEAPI and mappings. 
Jesper Friis 

0.3 2023-01-30 Updated introduction, Adham Hashibon 

0.4 2023-01-30 Cleaned up introduction, added abstract and description of SimPhoNy 
CUDS, Jesper Friis 

0.5 2023-01-31 Review by coordinator 



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 2 | 15 

 

 

2023-01-31 

1.0 2023-01-31 Final 

 

 

DISSEMINATION LEVEL 

PU Public X 

PP Restricted to other programme participants (including the Commission Services)  

RE Restricted to a group specified by the consortium (including the Commission Services)  

CO Confidential, only for members of the consortium (including the Commission Services)  

   

 

  



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 3 | 15 

 

 

2023-01-31 

TABLE OF CONTENT 

Document Control ................................................................................................................................................... 1 

Abstract ................................................................................................................................................................... 1 

Change History ........................................................................................................................................................ 1 

Dissemination level ................................................................................................................................................. 2 

Table of Content ..................................................................................................................................................... 3 

List of Figures .......................................................................................................................................................... 4 

1 Introduction.................................................................................................................................................... 5 

2 The OpenModel interoperability framework ................................................................................................. 6 

2.1.1 SYMPHONY CUDS .............................................................................................................................. 7 

2.1.2 DLite .................................................................................................................................................. 8 

2.1.3 Converting beween CUDS and DLite ............................................................................................... 11 

Additional components .................................................................................................................................... 11 

2.1.4 OTEAPI ............................................................................................................................................. 11 

2.1.5 Tripper ............................................................................................................................................. 13 

3 Acknowledgment ......................................................................................................................................... 15 

 

 

 

 

 

  



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 4 | 15 

 

 

2023-01-31 

 

LIST OF FIGURES 

Figure 1. Reuse interoperability technologies from earlier efforts in OpenModel. ................................................ 5 

Figure 2. The OpenModel technology stack. .......................................................................................................... 6 

Figure 3. The OpenModel interoperability framework. .......................................................................................... 7 

Figure 4. Example of how SimPhoNy works with linked data about a city from three different sources: the city’s 

traffic authority, a map from a city guide, and the university registry. Each data source is represented using a 

different colour and column. .................................................................................................................................. 8 

Figure 5. The DLite data model. .............................................................................................................................. 9 

Figure 6. An OTEAPI pipeline consisting of two partial pipelines.......................................................................... 12 

Figure 7. Separation of concerns. ......................................................................................................................... 13 

Figure 8. Illustration of how mappings can be used to semantically enhance existing metadata........................ 14 

 

  



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 5 | 15 

 

 

2023-01-31 

 

DELIVERABLE 2.4: CUDS CLASSES AND 

API  
 

1 INTRODUCTION 

 

This deliverable D2.4 reports on work done in Task 2.3 and describes the efforts exerted in OpenModel to adapt 

existing and emerging Common Universal Data Structures (CUDS) and APIs via EU semantic interoperability and 

Open Simulation Platform (OSP) technologies, originally outlined in the EMMC-CSA project and implemented in 

a range of projects, including SimPhoNy, SimDOME and OntoTrans (see Figure 1). In Task 2.3 these technologies 

have been further developed and extended to support needs by the OpenModel OIP.  A holistic approach was 

taken in OpenModel to allow support for as large an EU innovation ecosystem as possible. OpenModel OIP have 

been developed and designed to be accessed with multiple interoperability frameworks including SimPhoNy 

CUDS1, SOFT/DLite2 and OTEAPI3 as well as of AiiDA4 data structures, and can be adapted to any existing standard 

using the newly developed in OpenModel, like building and execution of declarative workflows. In particular the 

results of the work performed in Task 2.3 facilitate the seamless standardised integration of in principle, and in 

practice, any third party-physics-based models, solvers, post-processors and databases.  

 

Figure 1. Reuse interoperability technologies from earlier efforts in OpenModel. 

                                                                 
1 GitHub - simphony/simphony-osp: A framework that aims to achieve interoperability between software such 
as simulation engines, databases and data repositories using a knowledge graph as the common language. 
2 https://github.com/SINTEF/dlite  
3 OTE-API Core (emmc-asbl.github.io) https://emmc-asbl.github.io/oteapi-core/latest/ 
4 https://www.aiida.net/ 

https://github.com/simphony/simphony-osp
https://github.com/simphony/simphony-osp
https://github.com/SINTEF/dlite
https://emmc-asbl.github.io/oteapi-core/latest/
https://emmc-asbl.github.io/oteapi-core/latest/
https://www.aiida.net/


 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 6 | 15 

 

 

2023-01-31 

Specifically, the following aspects have been targeted; (i) enhanced support for the Elementary Multi-perspective 

Materials Ontology (EMMO) and (ii) a universal plugin architecture for third party tools including support for 

web-API.  Additionally, across the board enhancements to the overall performance of OpenModel OIP, especially 

for supporting declarative OpenModel workflows (ExecFlow and OntoFlow) has been achieved in collaboration 

with WP3.   

We emphasise that the common data structures and APIs have been delivered in a manner that focuses on serv-
ing the existing and emerging OIP needs. The utilisation of logical reasoning for graph transversal in OntoFlow 
has been implemented in the tripper.mappings module and reported in deliverable D4.2. The remote access to 
HPC and other platforms (like Marketplaces) is handled via AiiDA and further described in deliverable D4.5. The 
planned javaScript frontend was not deemed necessary based on the design in Task 2.2. Instead we have focused 
on improving the Python interface of DLite (which is implemented in C), for easier integration with other Python-
based technologies. 

Figure 2 shows the semantic interoperability technology stack in OpenModel. To the left we have the generic 

technologies and to the right the components of the software ecosystem that implements them. 

 

 

Figure 2. The OpenModel technology stack. 

 

2 THE OPENMODEL INTEROPERABILITY FRAMEWORK 

Figure 3 shows the OpenModel interoperability framework, which has been implemented in task 2.3. Its main 

responsibility is to provide a semantic data description and open APIs for accessing and working with data in a 

fully semantic way.  



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 7 | 15 

 

 

2023-01-31 

 

Figure 3. The OpenModel interoperability framework. 

The core components of the OpenModel interoperability framework are further detailed in the following sub-

sections.  

2.1.1 SYMPHONY CUDS 

The SimPhoNy OSP is a framework that aims to achieve interoperability between software such as simulation 

engines, databases and data repositories using a knowledge graph as the common language. It is focused on the 

domain of materials science. 

SimPhoNy enables: 

 Visualization and exploration of OWL ontologies and RDFS Vocabularies 

 Wrappers: interfaces between ontologies and software products or digital objects 

 Manipulation of ontology-based data: work with ontology individuals, transfer them among different 

software products using the wrappers, and query the knowledge graph 

SimPhoNy is an ontology-based framework aimed at enabling interoperability between different simulation 

and data management tools (such as simulation engines, databases and data repositories) using a knowledge 

graph as the common language. It is focused on the domain of materials science. 

Linked data is a format for structured data that facilitates the interoperability among different data sources. In 

particular, the data is structured as a directed graph, consistent of nodes and labeled arcs. With SimPhoNy, you 

can not only manipulate this linked data, but also transform existing non-linked data into linked data. 



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 8 | 15 

 

 

2023-01-31 

To better understand the idea of linked data, take a quick glance at the toy example below. It shows data about 

a city from three different data sources: the city’s traffic authority, a map from a city guide, and the university 

registry. As some of the concepts are present in multiple datasets, the linked data representation naturally 

joins all of them into a single one. 

 

Figure 4. Example of how SimPhoNy works with linked data about a city from three different sources: the city’s traffic authority, a map from 

a city guide, and the university registry. Each data source is represented using a different colour and column. 

2.1.2 DLITE 

In OpenModel, DLite is responsible for providing the underlying representation of the actual data. It is a software 

package designed for efficiently describing and working with scientific data, implemented in C and with both 

Fortran and Python bindings.  Full semantic interoperability is obtained with mapping to ontologies (see Sections 

2.1.4 and 2.1.5). DLite is pip installable from PyPi5 as the package DLite-Python. 

At the core of documenting the (scientific) data with DLite is the Entity. This is the metadata that the data pro-

vider needs to construct in order to describe the data.  

                                                                 
5 https://pypi.org/project/DLite-Python/ 
 

https://pypi.org/project/DLite-Python/


 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 9 | 15 

 

 

2023-01-31 

 

Figure 5. The DLite data model. 

Figure 5 shows the DLite data model. Starting on the top left, the ‘Basic MetadataSchema’  is an instance of it-

self and is the most fundamental metadata schema of DLite. This is a metadata and defines the fundamental 

properties of the the DLite metadata seen in the top three left most lilla boxes and the right most boxes: di-

mensions, properties, realations, and their respective parts. The EntitySchema is a MetadataSchema and de-

scribes how an Entity is set up. An Entity is an EntitySchema that si specialized to document a specific data. A 

DataInstance is an Entity instantiated with data.  

An example of and Entity that describes a molecule is shown below. Note that dimensions and properties that 

each instances of this molecule should have are described, but there is no data. This is the generic metadata for 

Molecule. It is worth mentioning that it is perfectly fine to make other Entities that describe a molecule, the 

one shown here is just an example. It is, however, important that the uris = namespace+name differ.  

{  

"name": "Molecule",  

"version": "0.1",  

"namespace": "http://onto-ns.com/meta",  

"description": "A minimal description of a molecules",  

"dimensions": [  

{  

"name": "natoms",  

"description": "Number of atoms"  

},  

{  

"name": "ncoords",  

"description": "Number coordinates. Always 3"  

} 



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 10 | 15 

 

 

2023-01-31 

 

],  

"properties": [  

{  

"name": "name",  

"type": "string",  

"description": "Name of the molecule."  

},  

{  

"name": "positions",  

"type": "double",  

"dims": ["natoms", "ncoords"],  

"unit": "Ångström",  

"description": "Atomic positions in Cartesian coordinates."  

},  

{  

"name": "symbols",  

"type": "string",  

"dims": ["natoms"],  

"description": "Chemical symbols."  

},  

{  

"name": "masses",  

"type": "double",  

"dims": ["natoms"],  

"unit": "u",  

"description": "Atomic masses."  

},  

{  

"name": "groundstate_energy",  

"type": "double",  

"unit": "eV",  

"description": "Molecule ground state energy."  

}  

]  

} 

 

While this is at first glance quite complex, this is designed so that an Entity should be relatively easy to con-

struct for any type of Scientific Data.  

DLite also provides some tools that can be used to work with the Entities and the Instances generated form the 

Entities (I.e.instances of entities populated with data).  



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 11 | 15 

 

 

2023-01-31 

Interoperability is achieved with mappings to an ontology (see below). This means that scientific data can be 

documented in two steps: 1. Map the data to a DLite metadata and 2. Map the DLite metadata to ontological 

concepts.  

2.1.3 CONVERTING BEWEEN CUDS AND DLITE 

CUDS can be considered equivalent to a knowledge graph which contains both ontologised concepts with rela-

tions and data. Thus, by default, CUDS do not have a clear structure. The data can be represented and grouped 

in various sets. Therefore, a generic converter between DLite datamodels (+ mappings) and CUDS is not con-

ceptually feasible. The design of a converter is dependent on the user case and how the data will be manipu-

lated. This means that targeted converters should be considered.  

Building on a targeted converter specific to a given use case developed in OntoTrans, a bare-bone repository 

has been created, dlite-cuds. This application considers that a CUDS individual belongs to one class represent-

ing an object that has properties. For example, a component is made of material. The material information will 

correspond to a DLite Entity. But this component also has a geometrical description, and it would correspond 

to a different DLite Entity. In a CUDS, the same individual can belong to different classes and the various prop-

erties blended. The dlite-cuds converter will fail in this situation. In addition, all properties are expected with 

values and not as other class with properties. Therefore, in general, the CUDS content will need to be split to 

apply this converter.  

The converter will then extract the structure and definition to generate automatically a DLite Entity and map-

pings. At this stage, the relation to be considered for identifying the properties must be specified in the config-

uration. This DLite Entity will be available to generate DLite instances, and also serve to create new CUDS.   

The application of this converter requires the user to carefully consider the data structure to be mapped be-

tween DLite and CUDS representation. The user also needs to consider how the relation to other data must be 

kept toward the rest of the graph (or collection in the case of DLite) in order to avoid duplicates or loose data 

provenance. 

Additional components 

 

2.1.4 OTEAPI 

The Ontology Translation Environment API (OTEAPI) is a framework for semantic data documentation, origi-

nally developed in OntoTrans. It is agnostic to the underlying interoperability system, but in OpenModel we are 

using it together with DLite (with its interfaces to CUDS).  

It is used in OpenModel to document data sources and consumers. In ExecFlow it is used to provide semantic 

description of the input and output a model expects. The connection between AiiDA and OTEAPI pipelines are 

further described in deliverable D4.5. 

OTEAPI utilizes the “pipe and filter” design pattern when implementing data documentation. A pipeline con-

sists of a set of reusable filters connected by pipes. Each filter is configured separately. These configurations 



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 12 | 15 

 

 

2023-01-31 

can be stored in a database and are the key for data documentation. There exists a set of different types of fil-

ters, but the most important are shown in Figure 6. A pipeline can be separated into two partial pipelines, 

where the first documents the data source and the second documents the data consumer. No data is trans-

ferred before the pipeline is executed. 

 

Figure 6. An OTEAPI pipeline consisting of two partial pipelines. 

A data source can be documented by a download, parse and mapping filter. The download filter knows how to 

access the data. The parse filter can parse the data and convert it to an internal representation. In OpenModel 

this is an instance of a data model. The mapping filter maps the data model to ontological concepts. Combined, 

they provide an interface for accessing the data source in a fully semantic way. 

Similarly, a data consumer can be documented by combining a mapping and a generation filter. The mapping 

filter maps the expected data model to ontological concepts and the generation filter serialises the expected 

data model.  

The mappings allow us to instantiate the expected data model from the data obtained from the data source 

(and possible other existing data). The implementation is based on the tripper.mappings module that is 

briefly described in the next section with DLite-specific functionality implemented in DLite.  

An important aspect of OTEAPI is that it supports separation of concern as shown in Figure 7. In order for a 

data provider to make the data source semantically available, he/she only has to create a data model that rep-

resent the data and map the properties of the data model to ontological concepts. The mappings may be done 

in collaboration with an ontologist, especially if existing domain ontologies must be extended to capture the 

semantic meaning of the data. The model provider/data consumer has a similar task when semantically de-

scribing the model input. The data and model providers can work completely independent and may not even 

know about each other. The ontologist will, in addition to help the data and model providers, investigate the 

semantic connections between properties of the source and target data models. A dedicated software engineer 

can implement the low-level parser (that populates an instance of the data model from the data source), gen-

erator (that serialises an instance of the data model) and semantic conversion functions (for converting be-

tween source and target properties).  



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 13 | 15 

 

 

2023-01-31 

 

Figure 7. Separation of concerns. 

More details can be found in the OTEAPI documentation: https://emmc-asbl.github.io/oteapi-core/latest/. 

2.1.5 TRIPPER 

Tripper6 is a triplestore wrapper that provides a simple and consistent interface to a range of triplestore 

backends. Most components in OpenModel that need access to a triplestore, are now doing that through trip-

per. The benefit for OpenModel, is that we do not become tired to a given triplestore and that we easily can 

utilise and combine knowledge from multiple triplestores. 

An important contribution to Tripper developed in OpenModel is the tripper.mappings module, which al-

lows to traverse a knowledge base that describes a set of data sources and models and find possible routes to 

obtain a given piece of needed information by fetching from the data sources and invoking data models. This 

module is currently utilised in OntoFlow and further described in deliverable D4.2. 

Currently, Tripper implements the following backends: DLite Collection, ontopy, rdflib and sparqlwrapper. on-

topy (EMMOntoPy)is an extension of OwlReady2 and therefore uses the OwlReady2 triple store. While none of 

these backends are backends that will probably be used in production, they are good candidates for testing and 

pre-production, depending on the needs of the project. Tripper provides a simple and consistent interface to a 

range of triplestore backends.  It strives for simplicity and is modelled after rdflib (with a few simplifications). 

The following is taken from excerpts of the tripper tutorial. Please see the original documentation for more in-

formation.  

To make it easy to work with IRIs, provide Tripper a set of pre-defined namespaces, like XSD.float. New 

namespaces can be defined with the tripper.Namespace class. A triplestore wrapper is created with the 

tripper.Triplestore class. 

Different backends can be easily used by initializing the Triplestore object using the backend keyword. For ex-

ample, to initialize with an rdflib backend one can run the following:  

                                                                 
6 https://github.com/EMMC-ASBL/tripper, https://emmc-asbl.github.io/tripper/latest/  

https://emmc-asbl.github.io/oteapi-core/latest/
https://github.com/EMMC-ASBL/tripper
https://emmc-asbl.github.io/tripper/latest/


 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 14 | 15 

 

 

2023-01-31 

from tripper import Triplestore 
ts = Triplestore(backend="rdflib") 

Many namespaces come with the Triplestore module pre-defined. However, additional namespaces can be easi
ly added with the bind() method. Namespace also supports access by label and IRI checking. New triples can 
be added either with the parse() method (for backends that support it) or the add() and add_triples() 
methods. For backends that support it the triplestore can be serialised using serialize().  

A set of convenient functions exists for simple queries, including triples(), subjects(), predicat
es(), objects(), subject_predicates(), subject_objects(), predicate_objects() and 
value(). Except for value(), they return the result as generators. The query() and update() methods ca
n be used to query and update the triplestore using SPARQL. 

Finally Triplestore has two specialized methods add_mapsTo() and add_function() that simplify working 
with mappings. add_mapsTo() is convinient for defining new mappings. It can also be used with DLite and 
SOFT7 data models. The add_function() describes a function and adds mappings for its arguments and return 
value(s).  

 

Figure 8 shows how mappings to ontological concepts can be used to semantically enhance metadata. To the 

left we have a data source with experimental data of some stress-strain curves. In the middle bottom, we have 

a data model (metadata) that describes a single stress-strain curve. Above the metadata we see a json repre-

sentation of an instance of this data model populated with data from the experiment. The datamodel is seman-

tically enhanced by mapping its stress and strain properties to the ontological concepts ‘Stress’ and ‘Strain’, 

respectively. In the knowledge base we can now add individuals of these concepts that stands for the actual 

data properties. The raw data is not stored in the knowledge base, but is referred to from it. 

 

Figure 8. Illustration of how mappings can be used to semantically enhance existing metadata. 

 



 

 

D2.4 CUDS classes and API © OpenModel Consortium CONFIDENTIAL 15 | 15 

 

 

2023-01-31 

 

3 ACKNOWLEDGMENT 

 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme 

under grant agreement No 953167. 

This document and all information contained herein is the sole property of the OpenModel Consortium. It may 

contain information subject to intellectual property rights. No intellectual property rights are granted by the de-

livery of this document or the disclosure of its content. 

Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s). 

The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the 

information and views expressed herein lies entirely with the author(s). 

 

All rights reserved. 

 

 


